Omega-3 fatty acid concentrate decreased triglycerides in coronary heart disease patients treated with simvastatin

Abstracted from: Durrington PN, Bhatnagar D, Mackness MI, Morgan J, Julier K, Khan MA, France M. An omega-3 polyunsaturated fatty acid concentrate administered for one year decreased triglycerides in simvastatin treated patients with coronary heart disease and persisting hypertriglyceridaemia. Heart 2001;85:544–548

BACKGROUND Used in conjunction with statins, omega-3 fatty acids may prolong survival after myocardial infarction and decrease serum triglyceride concentrations. However, evidence is limited.

OBJECTIVE To examine the triglyceride lowering capabilities, tolerability and safety of an omega-3 polyunsaturated fatty acid concentrate.

DESIGN Randomized controlled double-blind trial.

SETTING Two hospitals in Manchester, England; timeframe not specified.

PARTICIPANTS Fifty-nine consecutive established coronary heart disease patients with persisting hypertriglyceridaemia (> 2.3 mmol/L) receiving 10–40 mg/day simvastatin; mean age 55 years (range 37–75); 73% male.

INTERVENTION 2 g placebo or omega-3 fatty acid concentrate twice daily for 24 weeks.

OUTCOMES Serum trigylceride level.

MAIN RESULTS Compared with the placebo group, those receiving omega-3 fatty acid concentrate had significantly decreased serum triglycerides and very low density lipoprotein cholesterol at 3, 6 and 12 months (P all <0.005). The concentrate was well tolerated and had no reported adverse effects on low-or high-density lipoprotein cholesterol, glycaemic control, or biochemical or haematological factors.

AUTHORS' CONCLUSIONS The proprietary omega-3 fatty acid concentrate tested (Omacor) may be safe and effective for lowering serum triglycerides for hyperlipidaemia coronary heart disease patients treated with simvastatin.

NOTES Sample size is small, and the study may be underpowered to detect adverse effects. The study does not report on clinical outcomes.

Commentary

104

Recent prospective epidemiological studies show that plasma triglyceride metabolism should not be overlooked as a risk factor for coronary heart disease. A meta-analysis of 17 population-based prospective studies showed that elevated plasma triglyceride concentrations were an independent risk factor for coronary heart disease, whereby a 1 mmol/L increase in plasma triglyceride concentrations was associated with an increased cardiovascular risk of 32% in men and 76% in women.¹ The Physicians Heart Health Study showed that non-fasting serum triglyceride concentration was an independent predictor of future myocardial infarction.² Plasma triglyceride metabolism interacts with several risk factors for coronary heart disease and modulates the process of athero-thrombosis. Elevated triglyceride concentrations promote the formation of the highly atherogenic small, dense, low-density lipoproteins, reduce concentrations of the cardio-protective high-density lipoprotein fraction and promote the activation of coagulation factor VII.³

Fish oils are a rich source of omega-3 polyunsaturated fatty acids. They effectively reduce plasma triglyceride levels by

inhibiting hepatic triacylglycerol synthesis and very low-density lipoprotein production. The current study demonstrates that fish oil supplementation (4 g/d) significantly reduces serum triglyceride and very low-density lipoprotein cholesterol concentrations in hypertriglyceroidaemic patients, already receiving simvastatin treatment. Whilst it is important to note that initial triacylglycerol concentrations were higher in the omega-3 treatment group, nevertheless serum triacylglycerol concentrations were significantly reduced when the control group received the omega-3 supplement in the latter part of the trial.

The results highlight the added benefit of omega-3 supplementation in patients already receiving simvastatin. Whilst this study focused on triglyceride metabolism, three other studies have shown that omega-3 polyunsaturated fatty acids supplementation alone reduced mortality rates in patients with coronary heart disease.^{4,5,6} Hence it might be hypothesised that this combination treatment may be an effective cardio-protective therapy.

Dr Helen M Roche, BSc, MSc, PhD Trinity College, Dublin, Ireland

Literature cited

- Hokanson JE, Austin MA. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of populaion based prospective studies. | Cardiovasc Risk 1996; 3: 213–219
- Stampfer MJ, Krauss RM, Ma J, et al. A prospective study of triglyceride level, low-density lipoprotein particle diameter, and risk of myocardial infarction. JAMA 1996; 276: 882–888
- 3. Roche HM, Gibney MJ. The impact of postprandial lipemia in accelerating atherothrombosis. J Cardiovasc Risk 2000; 7(5): 317–324.
- Burr MI, Gilbert JF, Holliday RM, et al. Effects of changes in fat, fish and fibre intakes on death and myocardial reinfarction: diet and reinfarction trial (DART). Lancet 1989; ii: 757–761
- 5. De Lorgeril M, Salen P, Martin J-L, et al. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon diet heart study. Circulation 1999; 99: 779–785
- GISSI Prevenzione Investigators. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Preventionze trial. Lancet 1999; 354: 447–455